Read Rust

Performance

All things high performance Rust.

Posts

Learning SIMD with Rust by finding planets by Iban Eguia
Rust 1.27.0 has brought SIMD (Single Instruction Multiple Data), also known as vectorization, to stable Rust. If you read the announcement, you will see that SIMD should bring performance enhancements to our applications if we learn how to use it properly. But, for that let's first dive into how SIMD works.
Optimising path tracing: the last 10% by bitshifter
In my last post on optimising my Rust path tracer with SIMD I had got withing 10% of my performance target, that is Aras’s C++ SSE4.1 path tracer. From profiling I had determined that the main differences were MSVC using SSE versions of sinf and cosf and differences between Rayon and enkiTS thread pools. The first thing I tried was implement an SSE2 version of sin_cos based off of Julien Pommier’s code that I found via a bit of googling. This was enough to get my SSE4.1 implementation to match the performance of Aras’s SSE4.1 code. I had a slight advantage in that I just call sin_cos as a single function versus separate sin and cos functions, but meh, I’m calling my performance target reached.

The other part of this post is about Rust’s runtime and compile time CPU feature detection and some wrong turns I took along the way.
Optimising path tracing with SIMD by bitshifter
Following on from path tracing in parallel with Rayon I had a lot of other optimisations I wanted to try. In particular I want to see if I could match the CPU performance of @aras_p’s C++ path tracer in Rust. He’d done a fair amount of optimising so it seemed like a good target to aim for. To get a better comparison I copied his scene and also added his light sampling approach which he talks about here. I also implemented a live render loop mimicking his.
How to speed up the Rust compiler some more in 2018 by Nicholas Nethercote
Since my last post, rustc-perf — the benchmark suite, harness and visualizer — has seen some improvements. First, some new benchmarks were added: cargo, ripgrep, sentry-cli, and webrender. Also, the parser benchmark has been removed because it was a toy program and thus not a good benchmark.
RustFest Paris Workshop: Fastware by troubles.md
It’s often said1 that the slowest code is that which has been optimised without benchmarks. You wouldn’t expect your code to work if you never ran it, so why should you expect it to be fast if you never benchmarked it? Writing good benchmarks is a bit of an art, because it’s really easy to accidentally write benchmarks that make your code seem fast, when really the compiler is applying some optimisations that work in the side-effect-free world of the benchmark but can no longer get applied when you put it out into the wild.
Improving SmallVec's speed by 60% and why that shouldn't matter to you by troubles.md
smallvec is a library by the Servo team for reducing the number of allocations for dynamic arrays in the case that most of those arrays are below a certain size. Because malloc is fast, for many cases it’s actually slower to use SmallVec than just using Vec because the one-time cost of the initial allocation is dwarfed by the lifetime cost of SmallVec’s increased complexity. You can see that switching to Vec actually improves speed on many of SmallVec’s own benchmarks.
Dropping drops by Vincent Barrielle
Recently, a benchmark made it to the top of /r/programming, featuring Rust among other languages, and I was a bit surprised to see that the idiomatic Rust program was not competitive with the best-tuned C++ solution. The benchmark implements a binary tree, and the C++ solution leverages raw pointers while Rust would use an Option> to represent its tree. Since Option knows that Box is non-nullable, it should compile down to a raw pointer. Quickly inspecting the Rust and C++ versions would not let me find where the performance difference came from.
Porting Rust Benchmarks To Criterion by Llogiq
A few weeks ago, I set out to convert bytecount’s benchmarks to criterion, a statistics-driven benchmarking framework started by Jorge Aparicio and maintained by Brook Heisler.

Before, bytecount used bencher for its benchmarks, which is a straight port of the unstable, nightly-only std::test benchmark framework, extended to work with stable Rust. This was a great benefit compared to std::test, because now we could benchmark on all Rust versions (stable, beta, nightly, some specific version) without needing to fear regressions.
The Rust compiler is getting faster by Nicholas Nethercote
TL;DR: The Rust compiler has gotten 1.06x–4x faster over the past month.
Optimising CTree and strs by Jeff Smits
Once upon a time, I wrote an interpreter for Stratego Core in Rust, which I named strs. Stratego Core is the core language that Stratego is compiled to before the compiler goes further (to Java, or previously to C). A core language is an intermediate representation that is a subset of the surface language.

While I optimised that interpreter quite a bit, I noticed that the CTree (Stratego Core Abstract Syntax Tree) that the compiler spit out for me to interpret was very unoptimised. Therefore one the plans I described at the end of the blog post was a little tool for Copy Propagation on CTree files. This post is about that tool, and the optimisations in the interpreter that made it obsolete again.
How a Rust upgrade more than tripled the speed of my code by troubles.md
I’d like to share a quick story about the sheer power of LLVM and the benefits of using higher-level languages over assembly.
Performance experiments with matrix multiplication by Michal 'vorner' Vaner
One of Rust’s design goals is to be fast. That actually needs two distinct things from the language. First, is it shouldn’t introduce too much (preferably zero) overhead for its abstractions and be fast out of the box. Many people coming from the high level languages (python, javascript, …) find this to be the case ‒ just type the program, compile it (with --release) and it’s reasonable fast. The other, no less important, is allowing the programmer to tweak some knobs when trying to squeeze a bit more speed out of the program.

I’ve decided to test the second a bit and see how far I could go. I’ve chosen matrix multiplication as a case study, for several reasons. I’ve played with it before (in my master’s thesis), it’s relatively simple and the effects of optimizing it can be great. For simplicity, I’ve decided to multiply only square matrices with power-of-two sizes, but these restrictions can be lifted in a real implementation without significantly loosing performance ‒ only the code gets somewhat more complex and hairy.
How fast can we compile Rust hello world? by Jonathan Turner
Seeing Nick Nethercote’s blog post about speeding up the compiler, I started wondering just how fast could a Rust compiler be? How fast could we compile a simple example? How fast can we compile a Rust hello world?
How to speed up the Rust compiler in 2018 by Nicholas Nethercote
18 months ago I wrote about some work I did to speed up the Rust compiler (rustc). I’ve recently taken this work up again. Also, in the meantime rustc’s build system has been replaced and its benchmark suite has been overhauled. So it’s a good time for an update.
Faster Bulletproofs with Ristretto & AVX2 by Chain
A few months ago, Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell published Bulletproofs, which dramatically improves proof performance both in terms of proof size and verification time. In addition, it allows proving a much wider class of statements than just range proofs.

At Chain, we (Henry de Valence, Cathie Yun and Oleg Andreev) have been working on a pure-Rust Bulletproofs implementation, whose initial version we are publishing today, together with a set of notes.
New sysinfo version (huge performance improvements!) by Guillaume Gomez
This new version comes with great performance improvements. We're talking about 3x faster on macos, 2x faster on linux and 3x faster on windows (the benchmarks are at the end of the post).
Improving GStreamer performance with tokio by Sebastian Dröge
For one of our customers at Centricular we were working on a quite interesting project. Their use-case was basically to receive an as-high-as-possible number of audio RTP streams over UDP, transcode them, and then send them out via UDP again. Due to how GStreamer usually works, they were running into some performance issues.

This blog post will describe the first set of improvements that were implemented for this use-case, together with a minimal benchmark and the results. My colleague Mathieu will follow up with one or two other blog posts with the other improvements and a more full-featured benchmark.

The short version is that CPU usage decreased by about 65-75%, i.e. allowing 3-4x more streams with the same CPU usage. Also parallelization works better and usage of different CPU cores is more controllable, allowing for better scalability. And a fixed, but configurable number of threads is used, which is independent of the number of streams.
Speeding Up 'dwarfdump' With Rust by Robert O'Callahan
Writing a debugger for C++ on Linux, you spend a lot of time examining pretty-printed DWARF debug information using tools like readelf, objdump or dwarfdump. Unfortunately this can be quite slow.

I decided to try to speed dwarfdump up. TL;DR: I reduced the dump time from 506s to 26s by fixing some simple issues and taking advantage of Rust "fearless parallelism". I think there are interesting opportunities for speeding up many kinds of command-line tools using Rust and parallelism.
Rust + Node.js are awesome! by Benjamín Calderón
Blazing fast, low requirements, computationally intensive operations on Node.js using Rust
Building a fast Electron app with Rust by Kevin J. Lynagh
When I built Finda, I wanted it to be fast — specifically, to respond to all user input within 16 milliseconds.

Given this goal, you might be surprised to learn that Finda is built with Electron, a framework that’s often decried for being the opposite of fast.
Three Algorithm Optimizations Outside [Place], [Other place] by Steph
Recently, I came across an ad for a job that had a precondition for application: it required you to first solve a ✨programming challenge✨:
Criterion.rs v0.2 - a statistics-driven benchmarking library for Rust by Brook Heisler
Criterion.rs is a statistics-driven benchmarking library for Rust. It provides precise measurements of changes in the performance of benchmarked code, and gives strong statistical confidence that apparent performance changes are real and not simply noise. Clear output, a simple API and reasonable defaults make it easy to use even for developers without a background in statistics. Unlike the benchmarking harness provided by Rust, Criterion.rs can be used with stable versions of the compiler.
Benchmark of different Async approaches in Rust by Michal 'vorner' Vaner
The story about Rust’s async is still a bit in flux. There’s a bunch of libraries with their pros and cons and different approaches. Even I’m a bit to blame for that, as I’m writing one of my own, called Corona.
Faster Progress Report 2 by Adam Niederer
faster began as a yak shave, created to aid base💯 in its quest to become the fastest meme on Github. Writing an explicit AVX2-accelerated version of base💯's encoder and decoder, then realizing I'd have to do the same thing again to see the speedups on my Ivy Bridge desktop, pushed me to make this library. Months later, it has blossomed into its own project, and has eclipsed base💯 in both popularity and promise.