Read Rust

Tag: tokio


In an effort to understand the new Rust async/await syntax, I made a super-simple app that simply responds to all HTTP requests with Hello! and deployed on heroku.

If you want to skip right to the punchline, the source code and README instructions can be found on

heroku async tokio

I would like to understand how Tokio works. My interests run to the real-time and concurrent side of things but I don't know much about Tokio itself. Before the introduction of async and stable futures I more or less intentionally avoided learning it, not out of any sense that Tokio was wrong but there's only a finite amount of time to learn stuff and it's a rough business to learn a thing that is going to go out of date soonish.

Anyhow. These are my notes for learning Tokio. I don't have a plan of how to learn it's internals, but, generally, I learn best when I have some kind of project to frame my reading around. Context really helps. I don't have a sense of what I want to build long-term, but an HTTP load generator that can scale itself to find the maximum requests per second a server can handle while still satisfying some latency constraint would be pretty neat. This does mean I need to combine my learning with another library – hyper -- but I've used it before and think I can get away with leaving it as a black-box.

async tokio

The release of Tokio 0.2 was the culmination of a great deal of hard work from numerous contributors, and has brought several significant improvements to Tokio. Using std::future and async/await makes writing async code using Tokio much more ergonomic, and a new scheduler implementation makes Tokio 0.2’s thread pool as much as 10x faster. However, updating existing Tokio 0.1 projects to use 0.2 and std::future poses some new challenges. Therefore, we’re very excited to announce the release of the tokio-compat crate to help ease this transition, by providing a runtime compatible with both Tokio 0.1 and Tokio 0.2 futures.

async tokio

In the previous lesson in the crash course, we covered the new async/.await syntax stabilized in Rust 1.39, and the Future trait which lives underneath it. This information greatly supercedes the now-defunct lesson 7 from last year, which covered the older Future approach.

Now it’s time to update the second half of lesson 7, and teach the hot-off-the-presses Tokio 0.2 release.

async tutorial tokio

We’ve been hard at work on the next major revision of Tokio, Rust’s asynchronous runtime. Today, a complete rewrite of the scheduler has been submitted as a pull request. The result is huge performance and latency improvements. Some benchmarks saw a 10x speed up! It is always unclear how much these kinds of improvements impact “full stack” use cases, so we’ve also tested how these scheduler improvements impacted use cases like Hyper and Tonic (spoiler: it’s really good).

async tokio

We’re pleased to announce the release of the first Tokio alpha with async & await support. This includes updating all of the Tokio crates to use std::future instead of futures 0.1. It also includes adding async fn versions of the APIs.

async tokio

It took a bit longer than I had initially hoped (as it always does), but a new Tokio version has been released. This release includes, among other features, a new set of APIs that allow performing filesystem operations from an asynchronous context.

async tokio

To close out a great week, there is a new release of Tokio. This release includes a brand new timer implementation.

async tokio

I’m happy to announce a new release of Tokio. This release includes the first iteration of the Tokio Runtime.

async tokio

I'm happy to announce that today, the changes proposed in the reform RFC have been released to as tokio 0.1. The primary changes are: Add a default global event loop, eliminating the need for setting up and managing your own event loop in the vast majority of cases, and decouple all task execution functionality from Tokio.

async tokio

View all tags