Read Rust

Tag: linux


Bottlerocket is a free and open-source Linux-based operating system meant for hosting containers. Bottlerocket focuses on security and maintainability, providing a reliable, consistent, and safe platform for container-based workloads. This is a reflection of what we've learned building operating systems and services at Amazon. You can read more about what drives us in our charter.

The base operating system has just what you need to run containers reliably, and is built with standard open-source components. Bottlerocket-specific additions focus on reliable updates and on the API. Instead of making configuration changes manually, you can change settings with an API call, and these changes are automatically migrated through updates.

kubernetes linux

Distributing and packaging your Rust GUI application and making it available for Linux users can be hard, I will try to explain the various ways of doing that using Flatpak as a packaging format.

linux flatpak gtk

In my last blog post I said I wanted to spend some time learning new things. The first of those is Rust. I had previously tried learning it, but got distracted before I got very far.

Since one of the things I'd use Rust for is web pages, I decided to learn how to compile to WebAssembly, how to interface with Javascript, and how to use WebSockets. At home, I use a Mac to work on my web projects, so for Rust I am compiling a native server and a wasm client. But I also wanted to try running this on, which is a Linux server. How should I compile to Linux? My first thought was to use my Linux machine at home. I can install the Rust compiler there and compile the server on that machine. Alternatively, I could use a virtual machine running Linux. Both of these options seemed slightly annoying.

linux macos

In the past few months I’ve been working with Red Sift on RedBPF, a BPF toolkit for Rust. Red Sift uses RedBPF to power the security monitoring agent InGRAINd. Peter recently blogged about RedBPF and InGRAINd, and ran a workshop at RustFest Barcelona. We’ve continued to improve RedBPF since, fixing bugs, improving and adding new APIs, adding support for Google Kubernetes Engine kernels and more. We’ve also completed the relicensing of the project to Apache2/MIT – the licensing scheme used by many of the most prominent crates in the Rust ecosystem – which will hopefully make it even easier to adopt RedBPF.

In this post I’m going to go into some details into what RedBPF is, what its main components are, and what the full process of writing a BPF program looks like.

linux bpf

Today I’m releasing a library called iou. This library provides idiomatic Rust bindings to the C library called liburing, which itself is a higher interface for interacting with the io_uring Linux kernel interface. Here are the answers to some questions I expect that may provoke.

What is io_uring? io_uring is an interface added to the Linux kernel in version 5.1. Concurrent with that, the primary maintainer of that interface has also been publishing a library for interacting with it called liburing.


During the product development process monitoring our pipelines proved challenging, and we wanted more visibility into our containers. After a short period of exploration, we found that eBPF would address most of the pain points and dark spots we were encountering.

There was one catch: no eBPF tooling would help us deploy and maintain new probes within our small, but focused ops team. BCC, while great for tinkering, requires significant effort to roll out to production. It also makes it difficult to integrate our toolkit into our usual CI/CD deployment models.

Faced with this dilemma, we decided the only option was for us to write our own Rust-based agent that integrated well with our testing and deployment strategies.

linux bpf

Recently, a new Linux kernel interface, called io_uring, appeared. I have been looking into it a little bit and I can’t help but wondering about it. Unfortunately, I’ve had only enough time to keep thinking and reading about it. Nevertheless, I’ve decided to share what I’ve been thinking about so far in case someone wants to write some actual code and experiment. Basically, I have an idea for a crate and I’d love someone else to write it 😇.


QEMU and libvirt form the backend of the Red Hat userspace virtualization stack: they are used by our KVM-based products and by several applications included in Red Hat Enterprise Linux, such as virt-manager, libguestfs and GNOME Boxes.


Play with Linux process termination exploring such interesting features as PR_SET_CHILD_SUBREAPER and PR_SET_PDEATHSIG.


We designed a framework to help developers to quickly build device drivers in Rust. We also utilized Rust’s security features to provide several useful infrastructures for developers so that they can easily handle kernel memory allocation and concurrency management, at the same time, some common bugs (e.g. use-after-free) can be alleviated.

We demonstrate the generality of our framework by implementing a real-world device driver on Raspberry Pi 3, and our evaluation shows that device drivers generated by our framework have acceptable binary size for canonical embedded systems and the runtime overhead is negligible.


Over the past few months, System76 has been developing a simple, easy-to-use tool for updating firmware on Pop!_OS and System76 hardware. Today, we’re excited to announce that you can now check and update firmware through Settings on Pop!_OS, and through the firmware manager GTK application on System76 hardware running other Debian-based distributions.


In the last few weeks, I've been working on a new solution to firmware management on the Linux desktop. A generic framework which combines fwupd and system76-firmware; with a GTK frontend library and application; that is written in Rust.


View all tags